Article for Evaluation Engineering Magazine

Aug. 16,1993

A Survey of Data Acquisition & Analysis Software
Tools (including Visual Programming,)

Ed Baroth, Ph. D., Manager, and
Chris Hartsough, Lee Johnsen, Jim McGregor, Mag Powell-Mccks, Amy Walsh,
George Wells, Seth Chazanoff and Ted Brunzic, Members of Technical Staff,
Mecasurcment Technology Center
Jet Propulsion Laboratory, California Institute of Technology

PART 1

INTRODUCTION

Part of the Jet Propulsion Laboratory’s (] T'L’S) instrumentation Section, the Measurement
Technology Center (MTC) evaluates data acquisition hardware and software products for inclusion into
the instrument Loan Pool, which arc then made available to JPL experimenters. As such, it acts as a
focus for off-t he-shelf products. The MTC also configures turn-key measurement Systems that include
integrated sensors, signal conditioning, data simulation, acquisition, analysis, display and control
capabilities.ltz

The purpose of this article is to discuss severa different types of software tools the MTC has
used to develop such systems. To help demonstrate the capahilities of each package, a sample test
program was developed and will be described. Figure 1 shows five categories of toolsets on a‘crossroads
sign to introduce the reader to the confusing array of programming tools available. This article should
help reduce the confusion.

The signs express separate approaches that can be taken to performing data acquisition,
analysis and display: the ‘traditional’ approach of text-based BASIC or C programming, the
combination of graphical user interface (GUI) tools with text-based programming approach (with or
without instrument support), or the visual programming approach.

Code is written in visual programming languages by creating and connecting icons. These icons
represent functions (subroutines) and arc connected by ‘wires' that arc paths which variables travel
from one function to the next. Visua ‘code’ is actually the diagram of icons and wires rather than a text
file of sequential instructions. Although available since 1986, visual programming software is just how
becoming popular duc to maturity, usc in general purpose applications and availability across
platforms.345

TESTED SOFTWARE PACKAGES

This article evaluates some of the genera] purpose data acquisition and analysis packages:
LabVIEW and LabWindows from National Instruments, Visual Engineering Environment (VEE) from
Hewlett-Packard and WaveTest VIP from Wavetek. Table 1 shows the version, platforms and
configurations. Also discussed will be N! Power from Signal Technology inc., LabTech Notebook from
Laboratory Technologies and ATEasy from Geotest. ? here are certainly more packages available, with
the list growing daily, but not al fit the needs of the MTC.

The MTC acts as a service to JPL engincers and scientists, who have widely diverse needs, from
simple onc day programming tasks to projects that require many months and several engineers. in
sclecting the tools to usc for providing this service and this article, tools arc examined with the
following questions in mind:

General purpose system approach

The software must be as general purpose as possible. It must command a variety of interface
cards to acquire, analyze, display data and control different kinds and types of instrumentation. This
includes the ability to easily and quickly create instrument drivers when not available. It is aso
important that a graphical user interface (GUI) can be developed. The computer acts as the ‘window’ to

the experiment and information from all the instruments should be integrated on the screen. The
software should act in concert with the hardware to form a ‘system solution.” Software packages that

1

fit one niche, however well, (c.g., convert a PC into an oscilloscope, or do DSP or process control), but
cannot be expanded into a general purpose system, arc of no use to the MTC.

Quickly learned, easy to use

In judging software tools, the MTC is interested in the time to learn and the case of usc of
software tools. Of course, the more atool is used, the easier it isto usc, making these criteria somewhat
subjective. What isn't subjective is whether the software requires an experienced BASIC or C
programmer, uses Visual programming, encourages or forces object-oriented software development.

Available on more than one platform

It is highly advantageous to usc a tool that is available on more than onc platform, especially
if the applications themselves arc transportable. Applications developed for onc customer’s Mac, can
be modified to run on a PC, eliminating duplicity of effort. It also reduces learning time, as onc tool need
be learned, instead of different tools for different platforms.

Generates a stand alone, run-time version

The program is usualy developed on a computer in the MTC laboratory before delivery to the
customer. It's desirable that delivered turn-key systems not require a copy of the developmental tool
used to generate the program. The gencrated program should be a stand-alone program, or at least
reguire only a cheaper run-time package for exccution.

Well established with a good track record

From previous experience, the MTC is wary of ncw programs and newly released versions of
established programs. Delays resulting from undiscovered ‘features' in a development tool can interfere
with the timely delivery of asystem. Good support from an established manu facturer is necessary, asis
training because the MTC frequently delivers systems to users who make their own day-to-day changes.

Hardware or software keys not required

After losing weeks of work due to lost, broken, or non-working keys, the MTC no longer supports
development tools that require either a hardware or software kcy (not simply a license).

Platform

IBM PC/Clone

Minimum Configuration
Recommend cd: ()

Configuration Used

LabWindows IBM PC AT or compatible 80286, math coprocessor, 2 Mb 80486/33, 16 Mb memory, 630
Version 2,3a memory, 8 Mb hard disk space, EGA, VGA, Super VGA, or Mb hard disk, VGA, mouse, DOS
$1995 Hercules graphics adapter, mouse, DOS 3.1 5.0

LabVIEW IBMPC AT or compatible 80386/25, math coprocessor, 8 80486/33, 16 Mb memory, 630
for Windows Mb memory, 16 Mb hard disk space, EGA, VGA, Super Mb hard disk, VGA, mouse, DOS
Version 2.5.2 VGA, or Hercules graphics adapter, mouse, DOS 3.1, 5.0, Windows 3.1

$1995 Windows 3.]

WaveTest VIP

IBMPC AT or compatible 80286/25, (80386), math

80386/25, 8 Mb memory, 220 Mb

Version 1.0 coprocessor, 3 Mb memory, 5 Mb hard disk space, EGA, hard disk, VGA, mouse, DOS 5.0,
$695 (VGA), mouse, DOS 3.1, Windows 3.1 Windows 3.1, Visual BASIC
VEE Windows IBM PC or compatible 80386 /33DX, math coprocessor, 80486/33, 16 Mb memory, 630
Version 2.0 (80486DX), 8 Mb memory, (16 Mb), 15 Mb hard disk space, Mb hard disk, VGA, mouse, DOS
$1995 VGA 640x480 16-color, (SVGA 1024x768 256 color), 5.0, Windows 3.1
Run Time: $495 mousc, DOS 5.0, Windows 3.1

Macintosh
LabVIEW Any Macintosh computer with at least 4AMB of RAM, hard Quadra 950,24 Mb RAM, 400 Mb
Version 2.2.1 disk, System 6.0.3 or later, 5 Mb RAM for System 7.0 or later, hard disk, System 7.0.1, and Mac
$1995 20 Mb hard disk space. Ifx, 20 Mb RAM, 160 Mb hard

68040 processor required for Version 3.0

disk, System7.0.1

“ Hewlett Packard

HP VEE HP 9000 Series 300, 400, 700, 12 Mb RAM, (16 Mb), HP-UXModecl 382, 32 Mb RAM, 420
Version 2.0 8.x, X Windows 11.4,5 Mb Swap, 20 Mb hard disk spacc SCSI hard disk
$6000
sun

Microsystems
LabVIEW (Spare) ~ Sparclor later, supports OpenWindows 3 or XI 1R4 or 1-U, Spare 2GX, 32 Mb RAM, 880 Mb
Version 2.5.2 24 Mb RAM, 32 Mb disk swap, 12 Mb hard disk space hard disk
$4000
VEE (Spare) Sparcl or later, Sun' 08 4.1.2 or 4.1.3, XI 1 or Open Systems Spare 2GX, 32 Mb RAM, 880 Mb
Version 2.0 2.0 or 3.0, 12 Mb RAM (24 Mb), 5 Mb Swap, 20 Mb hard disk hard drive
$6000 Space

TABLE 1. Tested Software Packages

GENERAL NOTES ON DRIVERS

An important part of any data acquisition/instrumentation program is the ‘driver’ section.
Without drivers, which have cometo mean software that enables communication between the computer
and the instrument, there would be no data to acquire, analyze, or display. But there arc different kinds
of ‘drivers': drivers integrated into the operating system, interface drivers, drivers for special purpose
internal 1/0 boards (such as analog to digital and digital to analog converters), and higher level
instrument drivers.

The interface driver is used for controlling bus interfaces, e.g., |IEEE-488, R5-232, VXlor VME.
These low-level protocols arc the usual mecans of communicating with instruments or other devices.
Drivers contain functions for controlling communications through the interface. There is also some
method provided for checking interface errors. This type of driver is used as a tool for writing the
higher level instrument drivers. Interface drivers usually come with the GPIBor 1<S-232 card, or they
may be included in the user's software. It is scldom that this type of driver has to be created by the
user, and when this dots occur, it is not a task for the uninitiated. All the programs tested contain this
type of 10 W-1CVCI driver.

Specia purpose 1/0 boards nearly always come with a set of low-level protocols. Since these
arc the most difficult to write, the prudent user should very carefully question the manufacturer of the
board, especially as to its compatibility with the application package being used. It is not unusual for
the cost of developing this type of ‘driver’ to be many times the cost of the board. All the packages
tested contain drivers for a wide range of boards, although some of them only support boards from the
same manufacturer.

What is generally called an instrument driver is really no more than a collection of instrument
control functions passed to an interface driver. The commands perform the following tasks: verify the
interface to the instrument, initialize or calibrate the instrument, configure it for the desired operation,
start it performing the operation, check its status, and read its data. The instrument driver may be
included with the instrument or it may be available separately. in either case, however, an instrument
driver written for onc developmenttoolwill not generally work with another. (C drivers won’'t work
with BASIC, LabVIEW drivers won't work with WaveTest V 1P, ete.)

If the driver for the instrument is not available, it must be created. Software packages that
present a good environment for creating drivers arc important because driver development can be atime
consuming and difficul t task if not adequatel y support cd by the software tools. A friend] y development
environment can make writing the instrument driver almost trivial, assuming the instrument manual
contains all the relevant and correct information (not always a good assumption).

National Instruments, Hewlett I'ackard and Wavetck provide libraries of instrument drivers
for their respective software. National’s and Wavetek’s lists arc more extensive and general,
containing instruments from many manufacturers, while Hewlett Packard's list is heavy on, well,
Hewlett Packard instruments. Murphy’s l.aw applics, however -- no matter how extensive the library,
your particular instrument will not be included. That's the bad news. The good news is that with any of
the tested packages, writing a driver is really no big deal (except maybe for the first one).

in most cases, the user only needs half a dozenor so functions of an instrument’s capability.
Writing a driver is simply tapping those functions, not every function the instrument can perform. Once
writ ten, the driver becomes integrated into the program. Vast libraries of instrument drivers arc of
great importance only to the beginner. Advanced users usually copy parts of the library driver into

3

their own program, or most often write their own from scratch. This way, only the commands used arc
included, and the complexities of large drivers arc avoided.

PROGRAMMING WITH THE BASIC LANGUAGE

With the arrival of the Hewlett Packard Interface Bus (HPIB) and HP BASIC (also known as
Rocky Mountain BASIC), the average engincer could develop an application in a fraction of the time it
took using PL/M or assembly languages. All the low level HPIB driver calls were built into HP BASIC.
Of course HP BASIC was only available for HP's computers and only HP instruments had an HPIB bus.
However, this method of communicating between a computer and an instrument proved to be so popular
that other manufacturers began to add HPIB bus control to their own instruments, and non-HP computer
interface cards began to show up for other computers. This instrumentation bus became so popular that it
was adopted as the industry standard |IEEE-488 Genera] Purpose Interface Bus (GPIB) and now
instruments using it arc commonplace.

Programs for instrument control were originally written in some BASIC version on an IBM PC or
clone by the engincer that was to usc them. They were menu driven with no graphical interface
capability and were typically rather unsophisticated. The programs did nothing more than initialize
the instrument with a set of fixed paramcters, read values from the instrument at predefined intervals,
and write the data to a file. The data was then processed and plotted using another program, usually a
spread sheet program. Only whenthe engineer could afford a programmer for a few weeks did the
programs contain anything that resembled a graphical user interface. Even then, the user interface was,
at best, little more than data being plotted in real-time as it was acquired. Programming in onc of the
mm-graphical BASIC languages isstill the same.

OBJECT-ORIENTED PROGRAMMING

The next breakthrough in developing data acquisition systems came with the introduction of
object-oriented programming methodology. Object-oriented design is a bottom-up method of structured
programming, where the analyst begins with the fine details and works up toward the main level of
the program. It models a program as a set of cooperating objects that includes both data and functions.
Becausc it models both behavioral and information complexi t y, the program is much bet tcr organized
than if it were simply well structured, This allows programs to be easier to understand, debug, maintain
and evolve. Object-oriented design lends itself to tcam programming and code reuse.

The most common object-oriented programming tool is C++.

VISUAL BASIC

Onc of the BASIC programs that has become popular is Microsoft’'s Visual BASIC. There arc
two versions of Visual BASIC -- onc that requires Microsoft’s Windows and one that is a stand-alone
development tool for DOS. The usc of the Visual BASIC for DOS Professional Edition will be described
here. The DOS version was chosen over the Windows version because it can generate stand-alone,
compiled code that requires neither Windows nor Visual BASIC for execution. This means that the
application program can be executed on another machine with a minimal amount of memory and
without the extra cost of other run-time supporting software. An important side effect is that Visual
Basic for DOS applications runs faster than Visua BASIC for Windows applications (actually, they
don’t run slower in Windows, the delays arc duc to the overhead of the Windows environment).

The first step in development of an application is the design and creation of the visual user
interface, in other words, what the user will sce on the screen. This consists of a panel of objects such as
switches and push buttons, textual display boxes, selection list boxes, and plots or graphs. These and
other objects (called controls) arc placed inside windows that the users sce. The programmer draws the
controls on a blank window that will become the user interface. After the interface has been created,
the objects on it will automatically recognize user actions such as mouse movements and button clicks.

Nothing similar to conventional programming occurs until after the GUI has been created. Even
then, the programming takes place in small unconnected segments. Each control in the window has a
function associated with it. This function, determined by the programmer, is coded using BASIC in the
traditional way. The code, however, will only becexecuted when the control is activated with the
movement of the mousc or with the click of a button. The selection of a control is called an event.

Conventional programs run from the top, down. The only change in the flow of the program is
determined by the origina programmer. Visual BASIC, on the other hand, works in a completely
different way. The Visual Basic program consists of a set of independent segments of code that arc
activated by the user. The choice of functions and the order in which they arc executed arc determined
by the user.

4

If you have used the Windows version of Visua Basic, you will be disappointed in the DOS
version. The pancls do not make usc of the visual mode of the computer’s interface card. Instead, the
controls arc constructed from the extended characters of DOS’s ANSI set. This causes the control’s size
to be an integral multiple of character lines in height and an integral multiple of characters in width.
This is the price paid for keeping VBDOS small.

Visual BASIC is best used as a tool to develop GUI’s for a data acquisition package that can
take advantage of it.

SAMPLE PROGRAM REQUIREMENTS

A sample data acquisition and analysis program was written using each package. The program
requirements were chosen to demonstrate the following activities: Developing ‘drivers that allow
communication with instruments through GP1B, commanding and controlling instruments, acquiring,
analyzing and plotting data from instruments, and developing a software user interface integrated with
the hardware.

The sample program should give the reader a feel for problems encountered during application
development. Also, the screen design tools and visual presentation features of each tool arc
demonstrated.

The two instruments chosen were a signal generator and an analog to digital converter. The
application program controlled the wave type, amplitude, and frequency of the signal generator and
the sample rate, number of samples, and triggering of the A/D converter. The actual instruments and
their programmed operations were:

Wavetek Model 23 Function Generator: 10tech ADC488/16A Analog to Digital converter:
Wave type: Sine, square, or triangle. Sampling rate: Min. = 1kHz, Max. = 10 kHz
Amplitude; Min. = .01 volt, Max. = 10 volt. Number of samples upon triggering =1024

Frequency: Min. =10 Hz, Max. = 999 Hz.

The sample program, upon command, acquired 1024 data points and plot ted the time history on
the screen. The program then performed a Fast Fourier Transform (FFT) on the acquired data and
plotted it on a separate graph. Control of the program was a collection of scrccn-operated pulldown
menus, push buttons, switches, etc.

NATIONAL INSTRUMENTS LABWINDOWS, VIIRSION 2.2.1

This tool exists only for the PC platform. It is a good example of a data acquisition and analysis
package that bridges the gap between text-based and visual programming. Although it is often
confused with National Instruments LabVIEW, there arc vast differences between them. First,
LabWindows dots not work under the Windows environment. 1t was developed before Windows even
existed. LabVIEW on the other hand, only runs under Windows. Got it? Actually, National instruments
says the next version of LabWindows will run under the Windows environment.

The creation of an application in LabWindows requires the following steps:

1. Create or acquire the instrument drivers that will allow the developed application code to
communicate via GPIB with the instrument(s).

2. Using the ‘User Interface” function, create the ‘panels’ and ‘menubars’ that will become the
visual user interface in the executing application.

3, Create the code (in C or BASIC) that will respond to user ‘events' (the result of a mouse
click or a keyboard entry while the application is executing), update displays, process
data, and communicate (via the drivers) to the instruments.

instrument Drivers

National instruments provides a large library of drivers for the most-popular GPIB and RS-232
controllable instruments. If a driver isto be written from scratch, a significant portion of the
application development effort could be devoted to writing a driver. The first problem (assuming one
knows C or BASIC) is gaining an understanding of the instrument. Control of the instrument with both
its front panel and GPIB commands must be understood. The next step is to learn the LabWindows
procedures that allow the creation of a driver. This part of the LabWindows package is more complex
than developing screens and event handling. Driver development can be facilitated by the menu-
assisted code generation capabilities of LabWindows. General instrument control functions can be
sclected from menus and modified for the specific instrument. in this way, the developer is isolated

5

from concerns about the correct syntax of the function calls. Once the driver is written or available to
the programmer, developing the application is straightforward.

User Interface Function

in LabWindows, pancls arc the screens that contain displays, menubars, or controls (such as
push buttons and slide controls). Figure 2 shows examples of the controls that can be placed on a panel.
There arc numerous color choices for panels and menubars. Their size is aso easily modified. The pancls
may be nested in the sense that the menubar (or a control that is clicked) on the panel will request a
subsequent panel. The sccret to programming the application is to develop a naming scheme for the
panels and controls that allows easy reference from code developed later.

Programming the Application

Programming an application is simplified by menus that explain and insert any C/BASIC
command that is allowed by LabWindows. ‘I"his means that programming expericence is required, but not
an in depth understanding of the syntax and semantics of the language being used. Function panels ask
for variable names and build an instruction with the variable in its proper syntactical position. ‘1'here
arc ample error messages and debugging features that help the programmer la ter if problems arc
cncountcred. A typical LabWindows program would have the following modules:

1. Declaring and initializing variables, library references, and initializing instruments

2. Displaying of the main panel and menubar (other pancls could be called from this one)
3. Checking for and processing panel and menubar events

4. Communicating with the instruments

5. Storing, processing and displaying data

The Sample Program

The LabWindows version of the sample program consists of three panels. an Opening Screen
that introduces the program and asks for an operator keystroke, a Main Panel that is used to control the
test and output the results (Figure 3), and an initialization Panel that is used to initidize the
instruments (Figure 4).

The Initialization Panel

The LabWindows application first displays a title screen and then the main panel shown in
Figure 3. A mcnubar selection will display the initialization panel that is used for setting up
communications with the two instruments.

‘he Main Panel
The main panel provides status information and allows operator input. Some of the controls
indicate status, others arc for operator interaction.

Status Information

The status information controls arc outputs from the executing program that explain what is
happening. They cannot be ‘clicked on’ or modified by the operator:

1. Date

2. Time-of-day

3. Function generator status (this status is updated by the initialization panel)

4. Analog to digital converter status (this status also is updated by the initialization panel)

5. Graphs of the sampled data and calculated FFT

6. Program status ('sampling’ or ‘stopped’) -

7. File name for stored data

Operator Input
These arc the controls that the operator may ‘click on’ and modify:
1. Function generator control values (wave type, amplitude, and frequency)
2. A/D converter sampling rate
3. A button for requesting a ncw sample
4. A button for calculating and displaying an FFT
5. A button for sending ncw parameters to the function generator
6. A button for sending a ncw sample rate the A/D converier

6

The operator selects waveform type, amplitude, and frequency for the signal generator and
sampling rate for the A/D converter. The input controls were linked to logic that limited the range of
acceptable values. For example, if the operator entered an amplitude of 11 volts, it would
automatically y be changed to 10 by the program before being sent to the instrument. Arbitrary limits for
the values were made to simplify both the programming and the comparison of each computer platform
and toolsct.

To initiate communication with the instruments, which is a prerequisite to acquiring data, the
initialization pane] is sclected from the menubar. The initialization panel is shown in Figure 4. Error
messages describing the problem arc displayed when an instrument cannot be initialized. Control
parameters can only be modified from the main panel.

Documentation

LabWindo ws comes with a complete set of documents explaining its usc and operation. There s,
however, no index, which greatly limits the valuc of the documentation. The on-screen help is good
enough, though, that the other documentation is seldom necded.

Support

The greatest challenge in getting support when a problem occurs is getting through the
telephone queue and finding a consultant who is not busy. When all the consultants arc busy, a call for
assistance is not always expeditiously returned. It is nearly always returned, but this may take hours.

Summary

LabWindows is an appropriate development tool when the application is required to be a stand
alone program that runs on a PC. It is especialy appropriate when the data acquisition is at a high
rate and timing is critical. The program developer must have a rudimentary knowledge of either Basic
or C. It should be pointed out that there arc many non-instrumentation applications for Lab Windows.
Anyone developing an application that requires a complicated set of GUIs, including simulation or
process control could benefi t from the usc of Lab Windows.

Onc shortcoming of the current version of LabWindows is the non-support of the standard C
libraries. ‘I"his deficiency causes the programmer to spend needless time inventing a work-around for a
normally available function. Reportedly, a future version of LabWindows will support the common C
libraries.

VISUAL BASIC & WAVETEST

Recognizing the advantages of using G Uls for data acquisition on t he PC, Wavetek Corporation
created atoolsct called WaveTest V1P (Visua instrument Programmer) that is used to bring instrument
control into Windows applications that support Windows Dynamic Data Exchange (DDE) or Dynamic
Link Library (DLL). VIP is essentially aset of functions that can be called from applications such as
Microsoft Excel and SuperbaselV and Windows programming languages such as Microsoft Visual
BASIC, C, C++ and Quick C, Borland C, C++ and Turbo Pascal, and HP Basic for Windows.

Not only dots WavceTest VIP make its instrument control, data acquisition, data analysis, and
data presentation capabilities available to any Windows application supporting DDE or DLL, the VIP
fu net ions arc completel y independent of the applica tion calling them. This gives the programmer the
option of choosing an appropriate Windows application to work in rather than being locked into onc
particular option from beginning to end. Visua BASIC was chosen as the application to usc with VIP
for the sample program.

Another advantage of the VII' tool is that its modules for instrument control can be used to
communicate with the same instrumen t over different bus interfaces. In other words, a GPIB instrument
can be replaced with a VXI instrument without altering the instrument setups. The only change that
needs to be made is to tell VIP to look for the instrument on the VXJ bus instead of the GPIB bus. Bus
interfaces supported by WavceTest VIP include GPIB, VX1, VME, and RS-232.

The Sample Program
Creation of an application using Visual Basic and WavcTest VII' requires the following steps:

1. Acquire or create (using the VIP Library Generator) instrument drivers.
2. Create instrument setups using the VIP Instrument Manager. (Instrumcent setups arc VIP modules
that will be called from Visual Basic for instrument communication.)

7

3. Create the necessary graphical user interfaces using the Visual Basic Form editor or the WaveTest
VIP Pancl Editor.

4. Write the code in Visua Basic that will respond to user events on the panels or forms, update
display s, process data, and make calls to WaveTest VII'modules.

Instrument Drivers

The VIP Library Generator is used for creation of instrument drivers called instrument Library
Files (ILFs). Figure 5 shows the instrument driver for the function generator, The Library Generator is
WaveTest VIP's most effective and efficient component, instrument Library Files arc simple to create
since VIP takes care of al thelower level bus-specific interface details. This gives the Library
Generator two very strong features. First, the programmer’s work is reduced to filling in dialog boxes
with higher level, instrument-specific commands, Second, ILFs created with VIP's Library Generator
are not bus-specific so that separate drivers do not have to be written to communicate with the same
instrument over different buses. Over 275 complete instrument Library Files arc included in the
WaveTest VIP package, so the programmer may never even have the need to usc the Library Generator,
Incidentally, the drivers supplied with VII’ may be modified with the Library Generator to
accommodate specific needs.

The Library Generator was not used in creating the sample program because both instrument
library files needed were part of the WaveTest VII' instrument Driver Library. Not only were they
included, they worked !

instrument Setups

The Instrument Manager has two main purposes. Onc is to create instrument setups. An
instrument set up is amod ule that execu tes a subset of 1 LF commands when called from an application.
The file containing the necessary setups for an application is called an instrument Command Definition
(ICD) file. Two steps must be taken for the calling program to gain access to instrument setups and other
VIP functions. The instrument Manager must be running in the background during program execution and
the calling program must include a function call that loads the correct ICD file before making calls to
these modules.

The second purpose of the instrument Manager is for testing Instrument library Files. Bus trace,
simulation, and interactive instrument control cnable thorough testing of ILFs and instrument setup
modules before they arc used by the calling program. Another useful aspect of the instrument Manager
is that its debugging utilities arc available while the calling program is running. Bus activity,
therefore, can be moni tored during debugging of the calling Windows application. Figure 6 shows the
Instrument Manager with the sample program 1CD loaded.

Instrument setups for the sample applicat ion were created and tested in about one hour. First,
the two instrument drivers from the VIP Instrument Library were loaded into the instrument Manager.
The correct GPIB addresses were entered and instrument setups were created to serve the functions
required by the sample program, Development time for instrument setups depends on how complex the
setups arc, but the process is straightforward,

Creating the User Interface

Both WaveTest VIP and Visual Basic provide tools for creating a graphical user interface.
Though the Visual Basic GUI capahility is more extensive and colorful than the WaveTest VIP pane],
the VIP pancls were uscd for the sample programto examine the feasibility of using VIP with a
Windows application lacking its own GUI capability. Figure 7 shows a WaveTest VIP Panel. Four
panels were created: a main panel, an instrument i nit ialization panel, and two pancls for the graphs of
sampled data and FFT results. Development of the four panels was completed in about an hour.

The VIP panels and controls were very simple to display and interact with using Visual Basic.
Though the controls available in the VII' Panel Editor are not as numerous nor colorful as the ones in
Visua Basic, they were adequate for the data acquisition and instrument control purposes required by
the sample program. Onc bug was found when using the Pancl Editor. When Visual Basic is open in the
background and the user chooses to exit the Panel Editor after saving a pancl but without closing it, an
error isincurred which requires a system reboot to resolve.

Programming in Visual Basic

The final steps in the development of the sample program involved writing the Visual Basic
code to load and display the appropriate panels and to look for and process operator inputs.
Essentially, each pane] rcqu ired a loop that looked for state changes of the push buttons on the panel.

8

When a state change was detected, the corresponding function was performed. Exit from the loop was
controlled by a specified push button on each pane]. Fully commented code was writ ten in about three
clays. The code included checks to prevent the operator from performing operations in an invalid
sequence, i.e., performing an FFT before gathering data.

Documentation

Wavetck provides a Getting Started and Quick Reference Manual that contains an casy-to-
follow introduction to the WaveTest vir package, An example application is revicwed to give the user
an overview of the basic components of VIP and to demonstrate its capabilities. Then, step-by-step
instructions arc given that allow the user to create some of these components from scratch and test them
interactively. In this way, the demonstration of the application’s functional t y is supported by a sense
of what effort goes into achieving that level of functionality. After working through examples in the
Getting Started manual, a user will have a clear understanding of the purpose and basic characteristics
of WaveTest VIP. Wavetek also provides two volumes of reference manuas describing the different
components of VIP. The Programmer’s Reference was particularly useful for looking up the commands
needed to access VIP functions from the Visual Basic calling program.

Support

User support from Wavetck was excellent. If an answer to a question was not immediately
forthcoming, it was quickly found. Calls were usually returned within 15 minutes. The explanations
were clear and concise and the consultants were willing to spend whatever time it took for the
explanation to be thoroughly understood. Except for the bug in the Panel Editor mentioned above,
WaveTest VIP performed exactly as advertised and provided easy access to instrument control, data
acquisition, data analysis, and data display from the Visual Basic program.

Summary

The WaveTest VII' package brings powerful instrument control capabilities to the Windows
environment. The instrument Library Generator removes the hcadache of lower level bus interface
commands from instrument driver development. The instrument Manager facilitates functional
instrument control that isolates the programmer from the details of controlling the instrument.
WaveTest VIP'S versatile instrument control modules can beused by any Windows DLL or DDE
applications. VIP supports GPIB cards and embedded VXI cont rollers from several manu fact urers. In
addition, the next relcase promises to provide the same basic VIP driver development environment for
AT-bus cards and instruments, overall, the WaveTest VIP toolset is simple to usc and compatible with
the more popular Windows applications and inst rument bus interfaces. These features make it a strong
candidate for inst rument con t ral. It docs, however, work best when used with other software packages,
e.g., Visua BASIC, EXCEL, etc., which will drive up the cost of the *system.’

Other I'C platform Software tools

These arc only two of the multitude of software tools currently available for data acquisition
and processing. Ncw programs arc introduced each year. Duc to the MTC’s requirement for general
purpose tools that interact with a wide variety of instruments and interfaces, software packages with
limited functionality and/or compatibility just aren't useful.

Two packages worth noting arc Laboratory Technologics’ LabTech Notebook and Geotest’s
ATEasy. LabTech Notebook is a DOS program that uscs a spreadsheet or tabular type of configuration
and set-up section as well as an optional icon section. The list of drivers for internal data acquisition
and GPIB cards is very impressive and includes nearly all manufacturers. It merits consideration, now
that it no longer requi rcs a hardware key.

Geotoest’s Al’ Easy isan auto mated test equipment program that runs under Windows. It isamenu
driven ‘design-your-o wn-language’ program that seems casy to learn and usc. It can incorporate the
users existing Assembly, C, or Pascal code and integrate it into its own program. It costs $3K for the
GPIB version and $4K for the VX1 version, and it dots require a hardware key.

CONCLUSIONSTO PART 1

The selection of an appropriate tool depends to a large extent on the application and the
customer (assuming the end user is not the program developer) who will usc the product. If speed or
timing is critical, LabWindows isthe logical choice. LabWindows is also the logical choice if the
customer wants a stand-alone execu table program that requires no other software.

9

If the customer needs to acquire datadirectly into a Windows spreadsheet, WaveTest VIP is
the easiest to use. This is also the best tool to usc if the programmer needs the versatility of using
Visual C, Visual BASIC, or any new, yet to be developed product that runs under windows.

If it is important to transport the application from one platform to another, then the only
choiceisonc of the visual programming packages (LabVIEW for Windows or, soon, VEE for Windows).

PART 2
Part 2 will discuss the visual programming approach and discuss development of the sample
program using National instruments’ LabVIEW and Hewlett Packard’s Visual Engineering

Environment, including VEE for Windows. Stay tuned. It’s worth it.

REFERENCES

1. An Adaptive Structure Data acquisition System using a Visual-Based Programming Language, E. C.
Baroth, D. J. Clark and R. W. Losey, Fourth Al AA/Air Force/NASA/OA1 Symposium on
Multidisciplinary Analysis and Optimization, Cleveland, Ohio, September 21-23, 1992.

2. Acquisition, Analysis, Control, and Visualization of DataUsing Personal Computers and a Visual-
Based Programming Language, E.C. Baroth, D. J. Clark and R. W. Loscy, Conference of American
Society of Engineering Educators (ASEE), Toledo, Ohio, June 21-25, 1992.

3. Diagram Compilers Turn Pictures into Programs, Charles H.Small, EDN Special Report, June 1991,
pp. 13-20.

4. Software Makes Its Home in the Lab, Michael Puttre’, Mechanical Engineering Magazine, October,
1992, pp. 75-78.

5. Today's Equipment Tests Tomorrow’s Designs, Debra Bulkeley, Design News Magazine, May 17,
1993, pp. 82-86.

10

Visual Programming Languages

BASIC Programming

GUI Design Tools

with inetrument eypport

GUi Design Tools

withoutinstrumestgupport

CProg ramming

e e T A e

~

Examples

¥

National Instruments LabView
Hewlett Packard VEE

National Instruments LabWindows

Wavetek WaveTest VIP

Microsoft Visual BASIC

Figure 1. Instrumentation Software Crossroads

NACKLAPTITU TNUSDA e 1 ! TXTT1.aDNS!
Exanples of' Contral:

[Nuarieek |

[B23156. 78

SUing
String NBC1Z3

Binary Swilth
un
vl |—=—
Slide
rhnice ul

choice IZT
cholce u3

Thir is TTXT

King
-f‘:|$iu:|||m|: |

GOO

LED

» @
Sl n 10.00
1@ 8. 00
6.DO
sedection Dox 100
| choke 2 z. 0o
choke »3 0. 00-

Thes i1s o GKHPH

lraphsts imgoll

thisis a [EH] HUR

Ihig 13 @ SIHIY WHAI

Figure 2. LabWindows Pancl Sample Controls

Status

istration Progran

WAUETEK

Type of Waveform

Error |5 - 00

- Sine |

Frequency
Send commands to IPAVETEK

EXITtoMAINpanel?
Initialize Instruments

ISDO

min= 10 man=999

|neuer initialized Amplitude

min=01 maxu=10

) I Status
| 0 T E (: H lneuer initialized

Sampling Raie(KHl)Ei(D Error

min=1 max=9999

Send commands loloT[CHI

Filename for data storage m
Do Sampling Run (F4)

Run Status:

Perform FFYT 1F6) -
= ::“ to DDS lF8' Sample #

I3 02-05-1993

tine

10 20 30 40 50 60 20 80 90 100
Time (milliseconds)

40

20

205 410 614 819 1024

Figure 3. LabWindows Sample Program Main Pancl

EXITtoDOS!

Wavetek Function Generator

Initialize

Status

|neuer initialized

Waveform Type:

sine

Amplitude W ,?2;;2(1,
Frequency 500 m:;]gg

scan interval init

ioTECH ADC488/16A

Initialize

Status
|newer initialized

scan count init error

error

Sample Rate:
10 KHz

Figurc 4. LabWindo ws Sample Program Initializat ion Pancl

WaveTest Library Generator

via

File Help

Edit SoftPanel

Cards

Special Help

Manufacturer:

Model:

Name:

Bus Addr:

Wavetek

1

23 Synth Func Gen

I“ig

‘ecu

IMMEDIATE

PARAMETERS

TRIGG E RING

Execute

Frequency

DISCRETE

Reset

DICRETE

[

MAIN

Function

DBCRETE

Mode

DBCRETE

(@D | conTINuOUS

Amplitude

COMD)

CONTINUOUS

Null Out put

I

DISCRETE

Offset

Skpe
|

DISCRETE

Talk Mode ?

? | QUERY

Rising Edge
DBCRETE

SRQY Masks

DBCRETE

Falling Ecoe
DISCRETE

|

(DB | conTinuous

Figurc 5. Example of WaveTest VIP instrument Driver

File Edit Instruments Bus

=2
)| |
)

8/l B

v |OPOET
Jilesaa

Swynh Rne Gen

Figure 6. WavceTest VIP Instrument Manager

| status

WAVETEK

| I Never Initialized I

Go to Initialize Instruments Panel

[Send Commands to Wavetek]

Requested Amplitude (Volts) [Do Sampling Run]

Type of Waveform | ————
E“ IS.DD I Run Status:
Square Frequency (Hz] I I
Triangular 500
Status l Perform FFT
I0TECHADC | Tnever Initialized |
[Send Commands to ioTECH] | Quit L

Sample Rate

Filename for data storage
| WAVE DATA.DAT I

| Initialize Instruments
L

Figure 7. WaveTest VIP Panel

SAMPLED DATA

Amplitude (Volts) Vs Time (seconds)

60=y 1 M M MMM M~
: 2 J‘ - 4.0- F
l Perform FFT ! 20—
0.0-
| Send Commands to Wavetek -2.0-
-4,0-
WAVE TYPE FREQUENCY Al\iPLISTUEéE 6.0 —.‘—J L] |__J L] ."J L L] l_._l L] | |
’ so 'Y 200 3 ? 0000 0020 0.040 0.06) 008 ol 0.120
TRIANGLE - l 2 8
SQUARE - 20 ’ 500 1 ’ 5
10 1000 Y 10 FFT
SINE - N 0
s 999 =594 7.0-,
6.0-
Send Commands to I0tech 5.0-
SAMPLE RATE 40-
; 30~
{kHz - 20~ KLL'\
2 kHz - 1.0 -
‘ O.O"I) JT,LLl.*_LIL_L)-.L-&‘L-L. P
5 kHz - o 1000 2000 3000 4000 5000
10 kHz ::’

Figure 8. LabVIEW Sample Program Front Pancl

Initialize Instruments Send Commands to Wavetek Send Commands to iQtech Do Sample Run Perform FF1

aia

Doooofoooooooo§UiDOfiooooffoonoooon

‘.-.s““sssuuu\\ss“-.ﬂ.-.s-.v.\-.s-.n True D‘-“‘-““ﬂ‘:& HAARAALE G4 G A0 L0404 e,
b oL

0.00 _{__W-m_g i B o e 0000000 L MOODDOOD
’ A d % W
Yoy etal KRB Adrass '«:] Send Wavetek Settings
’ E 19%d Send 10tech Settings
EXT § dRM
I0tech GPIB address i % 0 .__{]B_Iﬂl
o e, e . :‘.
EE} = , L |
0 wr - [
Figure 9. Sample Program LabVIEW Diagram
WAVETEK 23 SYNTHESIZED FUNCTION GENERATOR
5
GPIB ADDRESS ERROR
- 5.00
AMPLITUDE FUNCTION MODE
/ /
a D C - SYNTHESIZED -
1.000E4
i RAMPDN - CLOCK - TRIGGER SLOPE
FREQUENCY RAMPUP - GATEDHAVER - ;
TRIG HAVER - NEGATIVE -
5 0.00 TRIANGLE - GATED - |
e SQUARE - TRIGGERED - POSITIVE ;l

OFFSET SINE ;:I CONTINUOUS ;—:I

Figure 10a. LabVIEW Sample Program Instrument Driver Pancl

Ooooooooooddo Phoooooooooo |

D:OFFSET;QH:NEGATIVE SLOPE;

QJ:POSITIVE SLOPE; | :EXECUTE

[ACASATA A TA A VA Ve A e e ve Ve Ve

[

R «
XQO0 @“B%d o d
4" TRIG SLOPE o AR 2
MODE C®d ogm

Gl n ~
& Erllle Qi D®AfI WK 23
& P 3e AMPLITUDE Sz 1

FUNCTION {emy : GP 1B ADDRESS
- - Repori
[EXT]}« OFFSET =3 |}

FREQUENCY

i i
MODE O ¥

Figure 10b. LabVIEW Sample Program Instrument Driver Diagram

MTC Demonstration Program
Date [| Time

WAVETEK| Status

never initialized | Snapshot of Sampled Data

Is{WaveType Error Requested Amplitude: 1.0
O 0.8
min=.01 max=1 O volt's 0.6
Frequency: 0.4
[Send Commands To WAVETEK] 500 gi
min=10 max=3399 0 2 4 6 8
Status Time [milliseconds)
ioTECH [never initialized |
Sample Rate:
10 kHz FFT

Send Commands To ioTECH |

[

Fitename for «=»2c= ;- |

DoSamplingRun (F4)
O pling Petform FFT (F6)
Run Status:] 1 2 3 4

Exit to DOS (F8)

Sample #

Figure 7a. Visuad BASIC Form (EXTRA)

I

s b M b

mucmseouxmvm,:ma pu

squawNJasuUl 8z T1eT3Tul

37Ul 30N

HELST

pUewwWo I

s REInee pLwasig

SYINE

